
2007.8.10 日本技術士会機械部会定例会

液晶ディスプレー(LCD)における 微細加工 = コーティング・賦形・印刷 =

綾部 守久 技術士【機械部門】

> 旭化成エンジニアリング(株) エンジニアリング事業部 加工技術エンジニアリング部

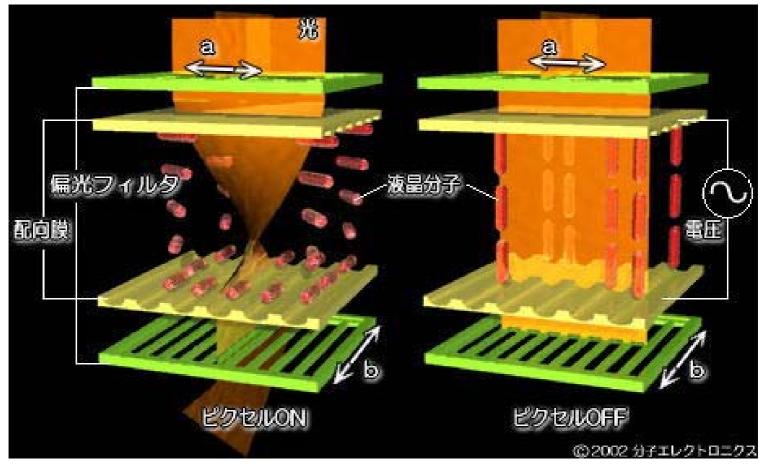
本日の内容

- 1.液晶の原理
- 2.液晶ディスプレーの構成
- 3.微細加工技術
 - a)薄膜コーティング
 - b)賦形
 - c)印刷
- 4.微細加工技術の今後

1.液晶の原理

液晶の原理

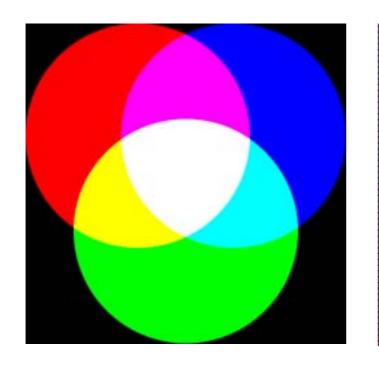
液晶とは
Liquid(液体の)Crystal(結晶)
光学的には異方性をもった液体のこと
ex. C₅H₁₁-(C₆H₄)₂-CN

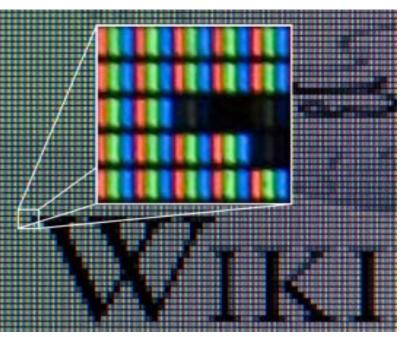


Source: ナノエレクトロニクス.jp

液晶の原理

液晶のシャッター効果

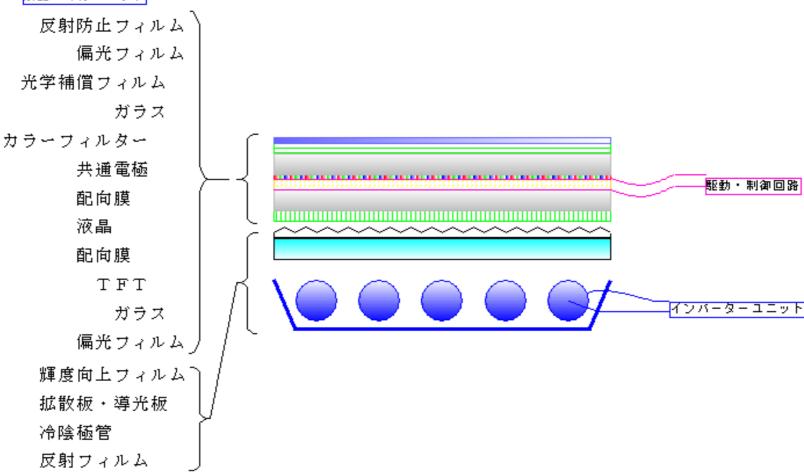



Source: ナノエレクトロニクス.jp

液晶の原理

・RGBによるカラー表示と中間色の表示

Source: Wikipedia



2.液晶ディスプレーの構成

LCDの構成

液晶パネルユニット

バックライトユニット

M.Ayabe 2006

LCDの構成

.LCDと微細加工

- 輝度向上フィルム&拡散板
- -配向膜
- TFTアレイ
- カラーフィルター

賦形

薄膜

薄膜

印刷

薄膜

印刷

3. 微細加工技術

a)賦形技術

微細加工技術 < 賦形 >

- ●賦形とは?
 - 平面に型を転写する成型法

.加熱賦形

- 射出法、プレス法、ロール法
- (くさび)型のレンズ形状
- (一般的に)ミクロンサイズオーダー

●UV賦形

- U V 硬化樹脂上でスタンプ& U V 硬化
- Rを持ったレンズ形状
- ナノサイズの賦形

3. 微細加工技術

b)薄膜コーティング技術

薄膜コーティング

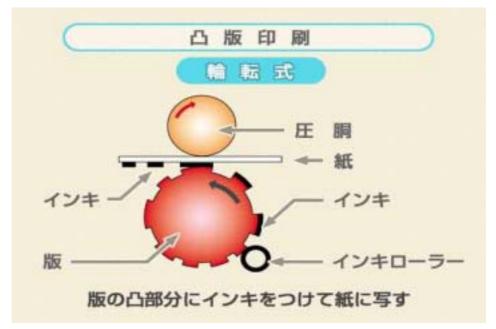
.蒸着

- からnmオーダーの製膜
- 主に2つに分類
 - PVD(Physical Vapor Deposition)
 - 物理蒸着 真空蒸着装置、スパッタリング装置
 - CVD (Chemical Vapor Deposition)
 - 4 化学蒸着 : プラズマCVD、熱CVD

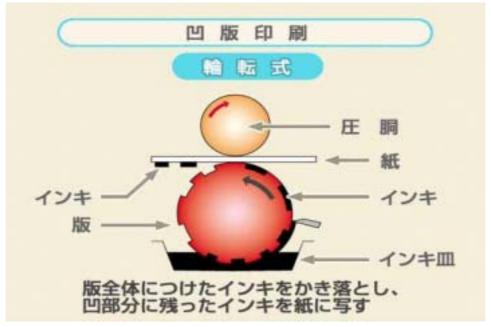
●塗工

- μ mオーダーの製膜
- FPD用に用いられる主な方法
 - スピンコーティング
 - ダイコーティング

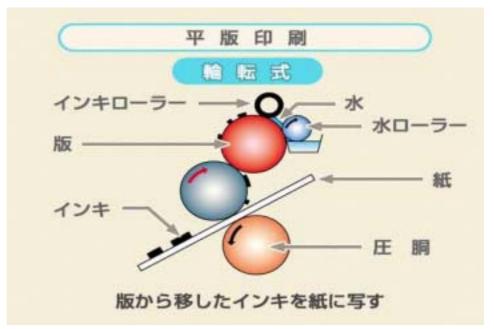
3. 微細加工技術


c)印刷技術

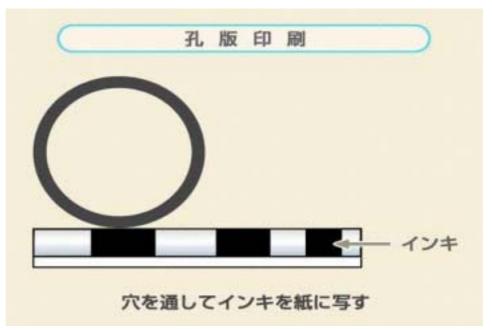
- ・印刷の定義
 - 印刷の3要素(インキ、版、被印刷物)を用いた複製技術(古典的定義)
 - ・印刷機を含めて4要素と呼ぶこともある
 - インクジェットは?・・・時代により変わる定義


- ・印刷法の分類(古典的)
 - -凸版印刷
 - 凹版印刷
 - 平版印刷
 - 孔版印刷

Source: IPA「教育用画像素材集サイト」


- ・印刷法の分類(古典的)
 - 凸版印刷
 - -凹版印刷
 - 平版印刷
 - 孔版印刷

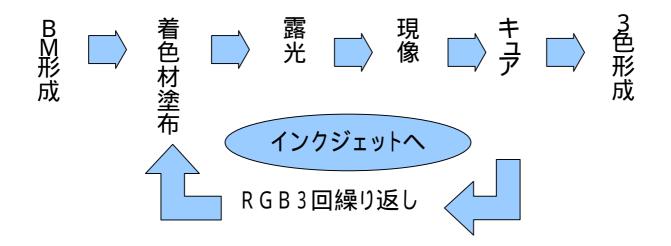
Source: IPA「教育用画像素材集サイト」


- ・印刷法の分類(古典的)
 - 凸版印刷
 - 凹版印刷
 - -平版印刷
 - 孔版印刷

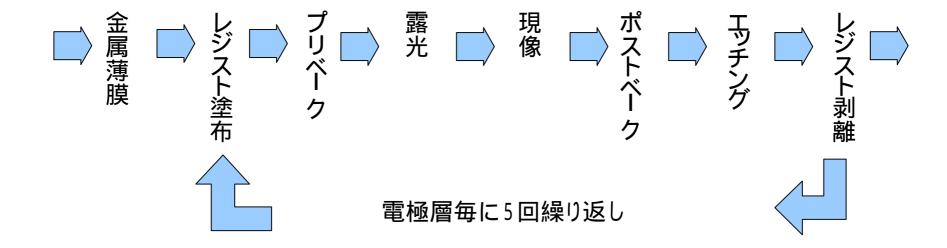
Source: IPA「教育用画像素材集サイト」

- ・印刷法の分類(古典的)
 - 凸版印刷
 - 凹版印刷
 - 平版印刷
 - 孔版印刷

Source: IPA「教育用画像素材集サイト」


・最近は上記に加えて

-インクジェット

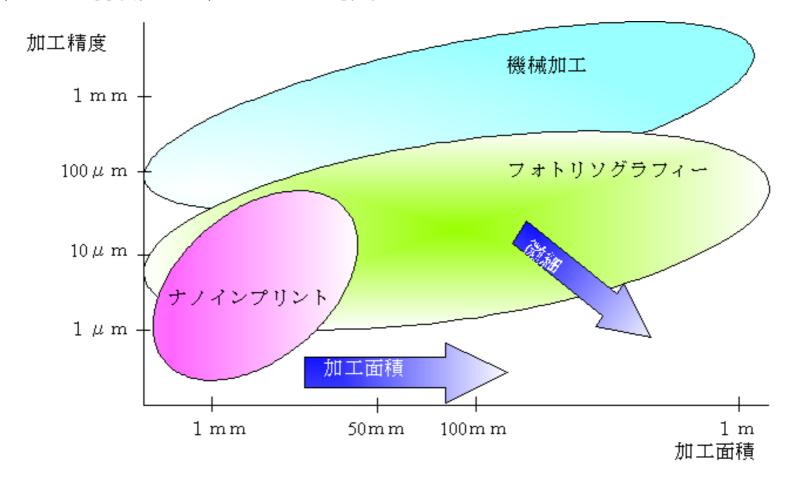

- Elector-printing
 - 電子部品の印刷技術
 - 従来の0.1mm精度から1 μ m精度へ
 - フォトレジスト工程の代替

- カラーフィルター製造プロセス
 - ・全面コーティング後に露光・現像処理

- TFTアレイの製造プロセス
 - 配線幅精度は1ミクロン程度
 - 印刷技術による代替は次世代待ち

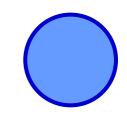
4. 微細加工の今後

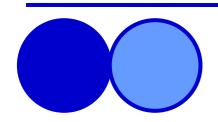
微細加工の今後


- ・賦形サイズの微細化
 - ナノインプリント
- ・フォトリソ工程の代替
 - 精密印刷法 精度 10 μ m 1 μ m

より微細で広い面積を一括加工

微細加工の今後


・加工精度と加工面積



M.Ayabe 2006

ご清聴ありがとうございました

