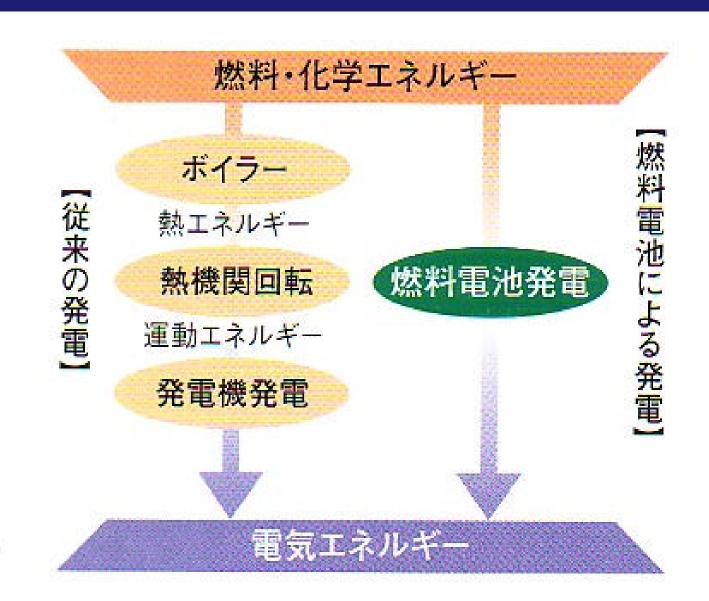
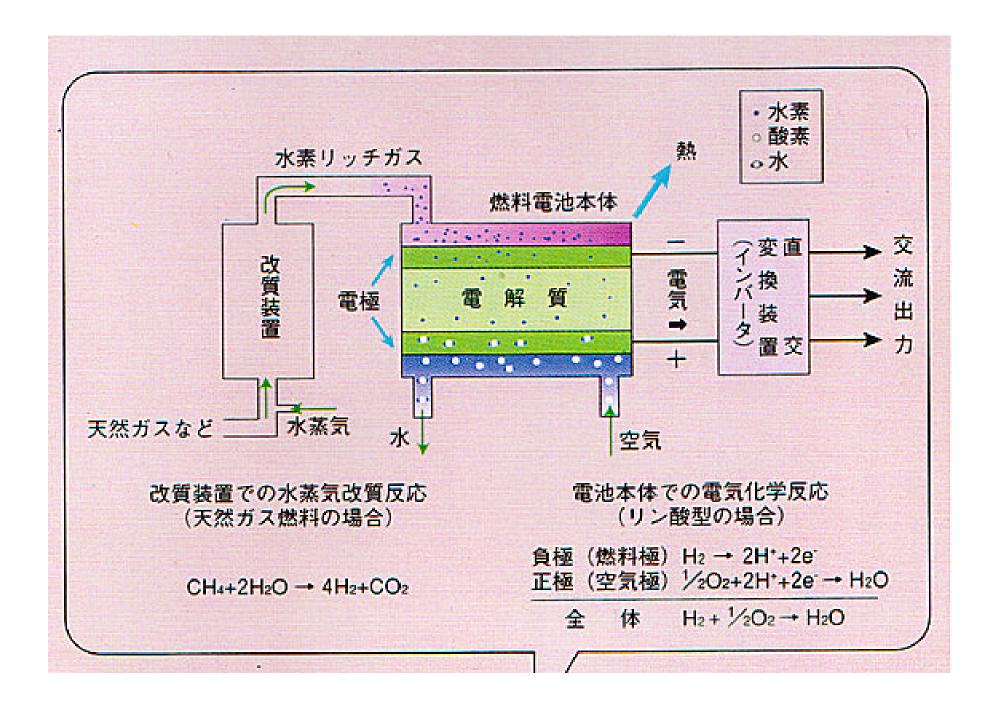
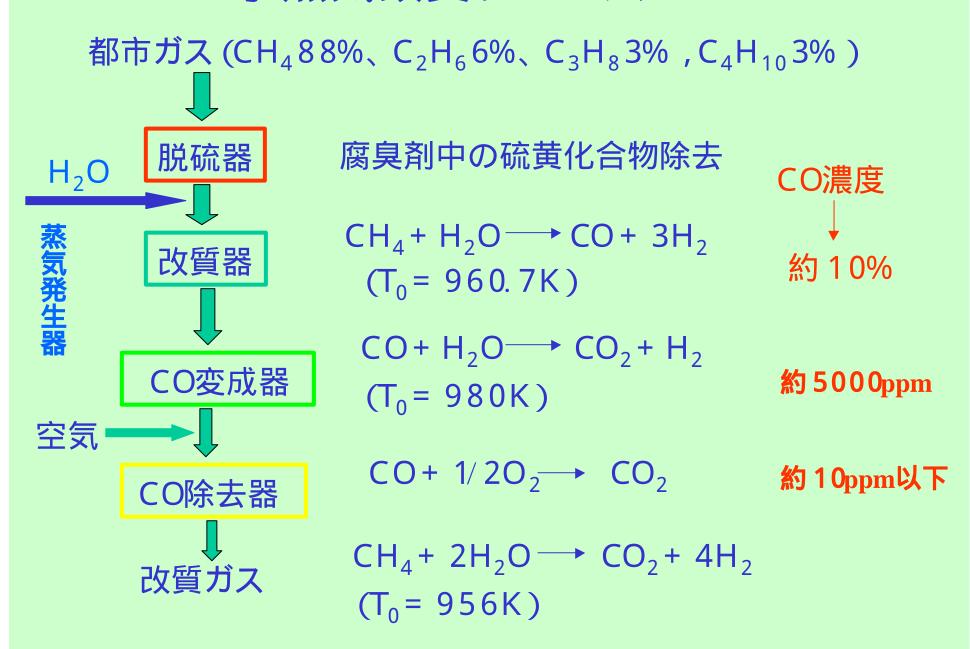

燃料電池の将来展望


(日本技術士会機械部会講演)


燃料電池開発情報センター 本間琢也

燃料電池の原理

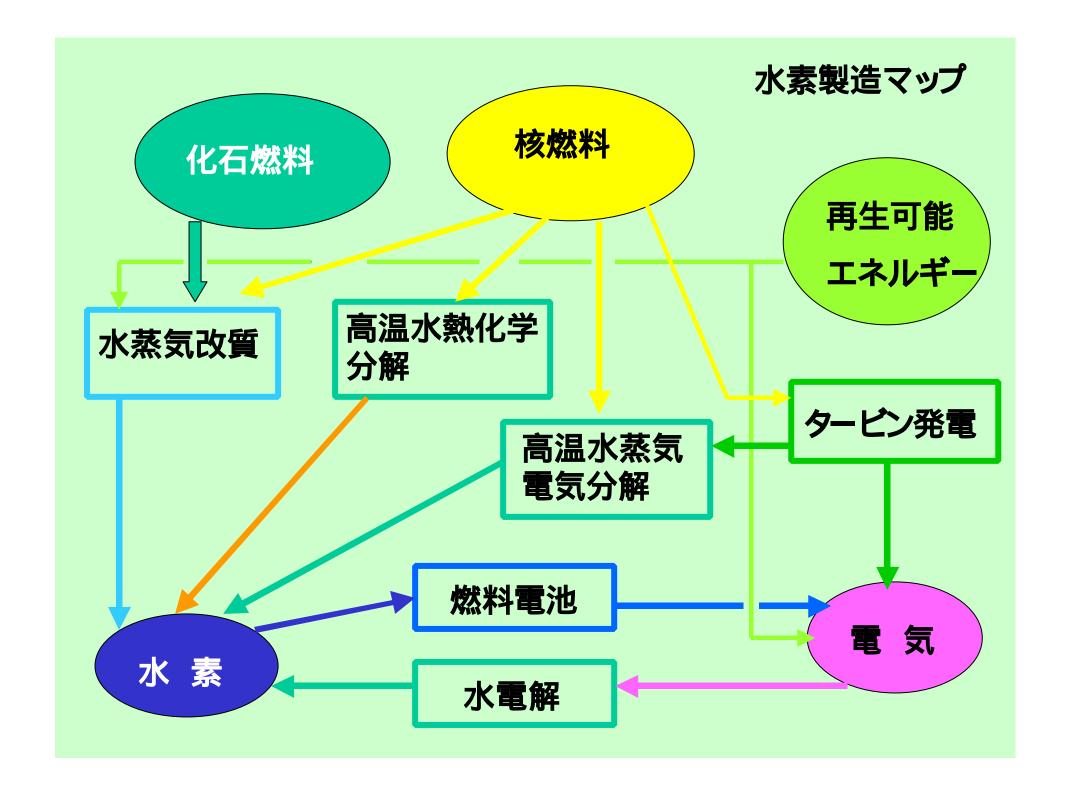


燃料電池と従来発電プロセスの比較

水蒸気改質プロセス

各種改質方式

水蒸気改質


$$C_nH_m + nH_2O \longrightarrow nCO + (m/2 + n)H_2 - Q$$

 $CH_4 + H_2O \longrightarrow CO + 3H_2 - 206 \text{ kJ/m ol}$

部分酸化改質

$$C_nH_m + n/2O_2 \longrightarrow nCO + m/2H_2 + Q$$

 $CH_4 + 1/2O_2 \longrightarrow CO + 2H_2 + 36kJ/mol$

Auto-thermal 改質 (x= 0;水蒸気改質)

$$C_nH_mO_p + x(O_2 + 3.76N_2) + (2n - 2X - p)H_2O$$

 $\longrightarrow nCO_2 + (2n - 2x - p + m/2)H_2 + 3.76xN_2$

燃料電池の特徴

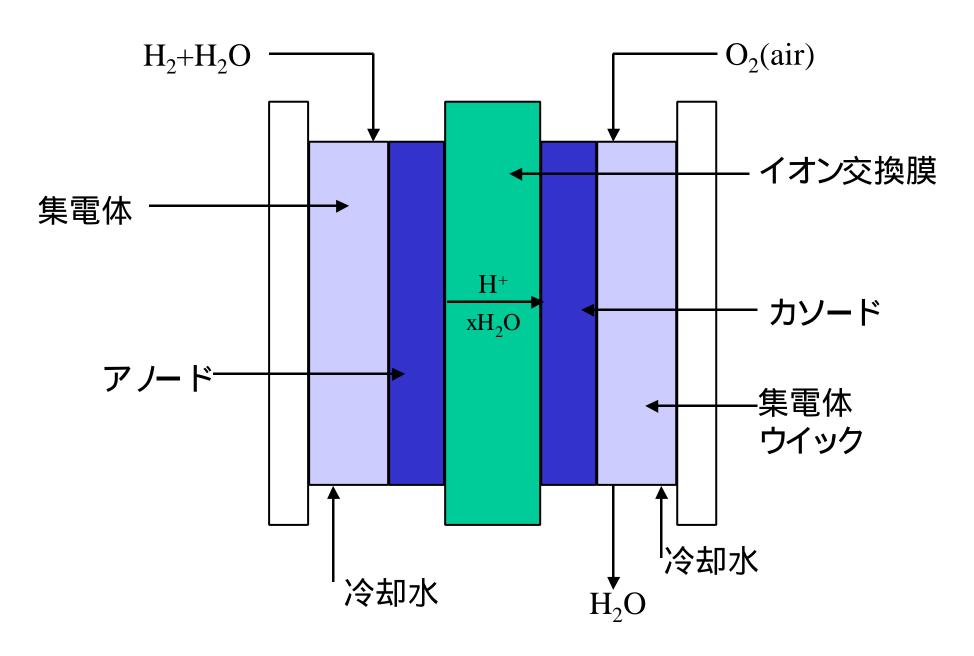
電気化学的反応のため熱機関に比べて低温で高効率 電力と熱を利用できるので総合効率が高い 反応生成物は水で、騒音の発生は無く環境に優しい 発電スケールに対して制約が無く分散型電源に最適 定格以下 部分負荷 運転で効率は下がらない 燃料を改質するので、多種類の燃料が使用可能 改質過程で発生するCO2が、電池内で濃縮される セル構造が微細、化学反応、熱、電気、流体現象が共存 信頼性、耐久性、コスト、安全性に課題

各種燃料電池の比較

	PAFC	MCFC	SOFC	PEFC	AFC
電解質	H ₃ PO ₄	溶融炭酸塩	セラミックス	高分子膜	KOH/H ₂ O
作動温度()	200	650	800 - 1000	80	60-80
燃料	H ₂ / 改質ガス	H ₂ /CO/ 改質ガス	H ₂ /CO/CH ₄ 改質ガス	H ₂ / 改質ガス	H ₂
改質方式	外部	外部/内部	外部/内部	外部	
酸化剤	O ₂ /空気	CO ₂ /O ₂ / 空気	O ₂ /空気	O ₂ /空気	О₂/空気
発電効率 (% LHV)	36~45	45~55	45~50	32~40	50~60

By Dr. J. Brouwer, November 18, 2002, Palm Springs

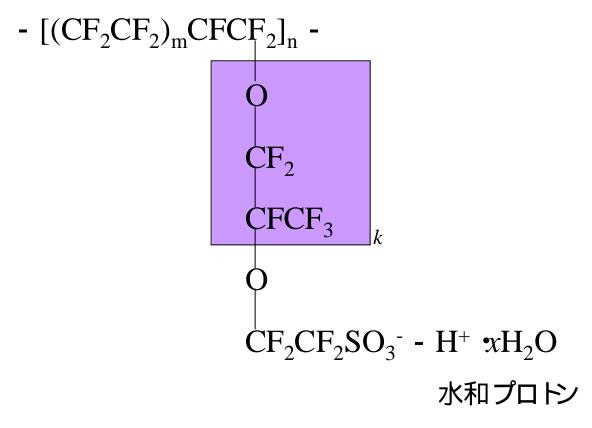
Anode and Cathode Reaction


Fuel Cell	Anode Half Reactions	Cathode Half Reaction
Proton Exchange	H ₂ → 2H+ + 2e-	1/2O ₂ + 2H ⁺ + 2e ⁻ → H ₂ O
Alkaline	$H_2 + 2(OH)^- \rightarrow 2 H_2O + 2e^-$	1/2Q ₂ + H ₂ O + 2e ⁻ → 2(OH) ⁻
Phosporic Acid	H ₂ → 2H+ + 2e ⁻	1/2O ₂ + 2H ⁺ + 2e ⁻ → H ₂ O
Molten Carbonate	$H_2 + CO_3^{2-} \rightarrow H_2O + CO_2 + 2e^{-}$ $CO + CO_3^{2-} \rightarrow 2CO_2 + 2e^{-}$	1/2O ₂ + CO ₂ + 2e ⁻ → CO ₃ ²⁻
Solid Oxide	$H_2 + O^{2-} \rightarrow H_2O + 2e^{-}$ $CO + O^{2-} \rightarrow CO_2 + 2e^{-}$ $CH_4 + 4O^{2-} \rightarrow 2H_2O + CO_2 + 8e^{-}$	1/2O ₂ + 2e ⁻ → O ²⁻

低温型各種燃料電池の特徴

種類	DMFC	PEFC	PAFC
電解質の材料	スルフォン 酸膜	スルフォン 酸膜	SiC/リン酸
電荷担体	H ⁺	H^+	H ⁺
作動温度	80	80	200
アノード	多孔質炭素	多孔質炭素	多孔質炭素
触媒	Pt/Ru	Pt/Ru	Pt
カソード	多孔質炭素	多孔質炭素	多孔質炭素
触媒	Pt	Pt	Pt

高温型各種燃料電池の特徴


種類	MCFC	SOFC
電解質の材料	LiAlO ₂ /LiNaO ₃	ZrO_2 (Y_2O_3)
電荷担体	CO ₃ ² -	O ² -
作動温度	650	1,000
アノード触媒	多孔質Ni板	Ni/YSZサーメット
カソード触媒	多孔質NiO板	多孔質LSM板

PEFCの原理

E.T.Dupont De Nemiours and Co. Inc. Nafion 膜

ペルフルオロスルホン酸ポリマー膜 Perfluorosulphonic acid polymer Membrane

スルホン酸基

燃料電池自動車の実用化に於ける問題点

PEFCの高出力密度化による小型軽量化の実現 起動時間が短く負荷変動に対する応答性が速い 高い信頼性と適当な耐久性 コストの削減 (目標値 \$ 50/kW) 燃料の選択と燃料供給インフラの整備 1)純水素、2)メタノール、3)ガソリン 自動車の大きさと種類による燃料の選択 1)路線バス、2)普通自動車、3)特殊自動車 車載可能なコンパクトな改質器の開発 ハイブリッド型燃料電池動力システムの設計 実用化のための実証期間と普及の時期 自動車会社による世界的連合の形成と開発戦略

60Lの各種燃料から得られる水素の量

燃料	重量	発熱量 LHV	最大H2量
	(kg)	(10^3kcal)	(kg)
軽油	50	520	22
ガソリン	45	470	20
LPG	30	360	13
LNG	27	320	14
メタノール	47	230	9
液体水素	4.3	120	4
圧縮水素ガス	1.1	31	1
(20M Pa)			

出展 汩石三菱

1次エネルギーからの変換効率

プロセス 変換効率

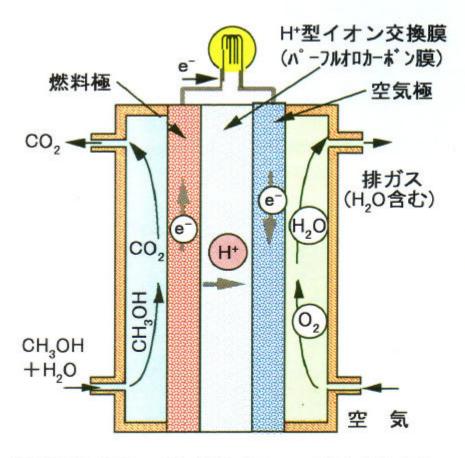
天然ガスから水素 84.4%

天然ガスからメタノール 67.4%

原油からガソリン 95%

• 水素ガスの圧縮 15%

• (5,000psi;340atm) (of H_2 energy)


トラック輸送のエネルギー 1%

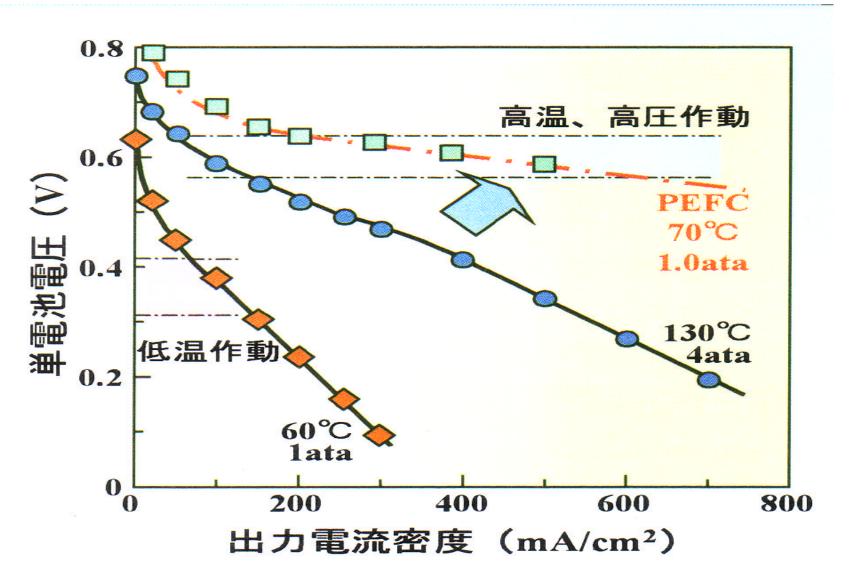
総合効率(Well-To-Wheel)

自動車の種類	燃料効率 Well to Tank (%)	車両効率 Tank to Wheel (%)	総合効率 Well to Wheel (%)
現状のICE ガソリン	88	16	14
ICE・蓄電池 ハイブリッド	88	30	26
F C 高圧水素ガス	58	38	22
F C ・蓄電池 ハイブリッド 高圧水素ガス	58	50	29
F C ・蓄電池 ハイブリッド 高圧水素ガス (将来の目標)	68*	60*	40*

出展;渡辺(トヨタ自動車) JEVA FORRUM 2001

DMFCの動作原理

燃料極の反応: CH₃OH+H₂O → 6H++CO₂+6e-


空気極の反応: 6H++3/2O₂+6e-→ 3H₂O

全体の反応 : CH₃OH+3/2O₂ → 2H₂O+CO₂

1.30 CH₃OH 1.25 PEFC 1.20 DMFC 1.15 1.10 ъ[⊢] Ш 1.05 1.00 0.95 0.90 200 400 600 800 1000 温度(℃)

各種燃料電池の起電力温度依存性

DMFCのVI特性

メタノール燃料電池のVー」特性